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Abstract

Continuous monitoring of photoplethysmographic (PPG)
signals is crucial for assessing physiological parameters
such as heart rate, pulse rate variability, and blood pres-
sure. However, low-quality signal segments significantly
impact measurement accuracy. In this study, we propose
a novel signal quality assessment (SQA) algorithm based
on boosted decision trees to classify PPG signal qual-
ity. The dataset, collected from 50 participants using a
Polar Verity Sense device, consists of 7,402 manually la-
beled 10-second segments. A comprehensive feature ex-
traction process yielded 48 attributes from time-domain,
frequency-domain, and fiducial point-based analyses. Af-
ter evaluating multiple machine learning models, the en-
semble boosted tree classifier achieved the highest accu-
racy (98.12%). Feature selection using the Minimum Re-
dundancy Maximum Relevance (MRMR) method reduced
the feature set to 16 key attributes while preserving classi-
fication accuracy (97.0%). The results demonstrate that an
optimized machine learning approach can provide robust
and computationally efficient signal quality assessment.

1. Introduction

Continuous monitoring of photoplethysmographic (PPG)
signals enables the calculation of various physiological
parameters, such as heart rate (HR), Pulse Rate Vari-
abilty (PRV), Blood Pressure (BP) and heart rate variabil-
ity (HRV) [1]. However, the presence of low-quality signal
segments can significantly degrade the accuracy of these
measurements [2, 3]. Currently, no standardized algorithm
exists for automatically assessing PPG signal quality and
filtering out low-quality segments. To address this limi-
tation, an automated approach is required to enhance the
reliability of PPG-based physiological assessments.

Signal Quality Assessment (SQA) has been exten-
sively studied in the scientific literature using a variety of
methodologies, including signal processing techniques and
machine learning-based approaches[4]. Recent research
has introduced new flowchart-based frameworks for com-
puting Signal Quality Indices (SQIs) [5,6], many of which
rely heavily on fiducial points extracted from the signal.
Consequently, the accuracy of SQIs is strongly influenced
by the choice of the beat detector. However, there is cur-
rently no universally accepted gold standard for beat de-
tection [7], introducing variability and potential biases in
signal quality estimation.

To overcome these limitations, alternative approaches
have been explored, including the use of time-domain and
frequency-domain features, as well as template-matching
techniques [8,9]. These methods allow for a more compre-
hensive evaluation of signal quality by capturing broader
characteristics of the signal beyond fiducial point accuracy.

In this study, we propose a novel machine learning
(ML) algorithm based on boosted decision trees for au-
tomated PPG signal quality classification. The algorithm
extracts 16 distinct features from the signal and achieves
high classification accuracy, demonstrating its robustness
for SQA. Unlike traditional methods that rely predomi-
nantly on fiducial points, our approach employs an ensem-
ble learning strategy that integrates features from all three
domains: fiducial points, time domain, and frequency do-
main, ensuring a more reliable and generalizable signal
quality assessment.

2. Materials and Methods

To develop and evaluate the SQA algorithm, a novel
dataset of PPG signals was acquired. This dataset was col-
lected using the Polar Verity Sense device (Polar Electro
Oy, Kempele, Finland), an optical heart rate (OHR) sensor
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Figure 1. Examples of PPG signal segments with the two
different quality levels: a low-quality segment on the left
and an high quality segment on the right.

operating at a sampling frequency of 55 Hz. In total, 20
hours recordings of PPG were obtained from 50 patients.
The participant population had an average age of 53 years
and included 60% women with 50% of participants engag-
ing in regular physical activity, while the mean heart rate
was 77 beats per minute (bpm).

A critical step in the development of the methodology
was the accurate labeling of signal quality data. The raw
PPG signals collected from participants underwent a pre-
processing phase that included a Butterworth bandpass fil-
tering with cutoff frequencies of 0.5 Hz and 8 Hz [10].
Following filtering, the dataset was divided into 10-second
segments. This segmentation strategy was adopted to mit-
igate the challenge of assigning a single quality label to
longer windows, such as 60 seconds, where signal quality
can vary significantly within the same segment. By using
shorter 10-second segments, fluctuations in signal quality
could be more precisely captured, leading to an enhanced
classification accuracy [11].

The final dataset comprised 20 hours of recordings,
yielding a total of 7,402 segments. Each segment was man-
ually labeled by three independent experts using a two-tier
grading system. Segments were categorized as either high-
quality or low-quality based on their visual clarity and
morphological integrity. In the final distribution, 60% of
the segments were labeled as high quality, while the re-
maining 40% were classified as low quality due to motion
artifacts during signal acquisition. Figure 1 provides rep-
resentative examples of PPG segments corresponding to
each quality class.

The proposed algorithm is a machine learning classifi-
cation model designed to assess signal quality using the
described dataset, where the target variable represents the
quality grade. This dataset comprised 48 features span-
ning multiple domains to comprehensively characterize the
PPG signal, as detailed in Table 1.

To ensure a thorough signal characterization, five dis-
tinct categories of features are extracted. Time-domain
features, such as skewness and median, capture the sta-

Table 1. List of the 48 extracted features to characterize
the PPG categorized by the different domains.

Domain Features
Time-Domain Mean, Variance, Skewness, Kurtosis, Max,

Min, Median, StdDev, Range, IQR, RMS
PeakToPeak, ZeroCrossings, Perfusion,
Entropy, Energy

Frequency-Domain TotalPower, DominantFreq, Bandwidth,
SpectralEntropy, LowFreqPower, HighFreqPower,
RelLowFreqPower, RelHighFreqPower, SNR

PCPD Based Features PeakCount, percentage, MeanPeak,
VarPeak, MedianPeak, MaxPeak, MinPeak

Pulse-Pulse Interval (PPI) MeanPPI, VarPPI, MinPPI, MaxPPI, HeartRate,
SDNN, RMSSD, pNN50

MCC Based Features MCC Mean, MCC Variance, MCC Skewness,
MCC Kurtosis, MCC Max, MCC Min,
MCC Median, MCC StdDev

tistical distribution of the signal, while frequency-domain
parameters, including total power and bandwidth, describe
its spectral composition. A more refined representation is
achieved through fiducial point-based features, derived us-
ing the Peakwise Correlation Pulse Detector (PCPD)[12],
which is a robust algorithm specifically designed to iden-
tify valid peaks in the PPG. These features quantify the
number of peaks, their median values, and additional met-
rics that characterize variations in the Pulse-Pulse Interval
(PPI) across different recording segments [13].

To further enhance signal quality assessment, the al-
gorithm incorporates the Minimum Correlation Curve
(MCC), a fundamental component of PCPD. The MCC
quantifies the correlation between the recorded PPG signal
and high-quality reference windows, serving as a robust in-
dicator of signal fidelity. By analyzing this curve, temporal
descriptors, such as variance and kurtosis of the MCC are
extracted, providing additional discriminative power to the
classification model. This multi-domain feature extraction
strategy ensures a robust representation of the PPG signal.

To ensure the highest quality of the dataset, standard-
ization was performed using Z-score normalization, ensur-
ing that all features have a mean of zero and a standard
deviation of one, thereby enhancing the performance and
stability of machine learning models.

Additionally, outlier detection was conducted using the
IQR method, where values beyond the lower bound (Q1−
1.5 × IQR) or the upper bound (Q3 + 1.5 × IQR) were
identified and analyzed. The dataset was split into 70%
for training and 30% for testing, while validation was per-
formed using a ten-fold cross-validation approach to en-
sure model robustness and prevent overfitting. To tackle
class imbalance in the target variable, the training dataset
underwent undersampling, ensuring that the classes were
perfectly balanced (50/50).

Using the structured and labeled dataset, multiple ML
models were developed and evaluated. Each model was
trained and validated using standard ML procedures to en-
sure robustness and generalizability. To further investi-
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Table 2. Average classification accuracy for the different
machine learning models tested in this study, listed in de-
scending order of performance

Model Type Accuracy (%)
Boosted Tree 98.12
Support Vector Machine 97.92
Neural Network 97.58
Efficient Linear SVM 97.56
K-Nearest Neighbors 97.21
Binary Logistic Regression 97.11
Linear Discriminant 97.08
Decision Tree 96.10
Naive Bayes 96.01

gate the discriminative power of different feature types,
the dataset was also analyzed by feature domain: time-
domain, frequency-domain, and fiducial point-based fea-
tures, to determine whether specific domains were more
effective in distinguishing between high- and low-quality
PPG recordings.

Once the models were trained, the most suitable one,
identified via the highest accuracy, underwent a feature
reduction process using the Minimum Redundancy Max-
imum Relevance (MRMR) parameter. Analyzing this pa-
rameter with the elbow method made the reduction of fea-
tures possible. This step aimed to remove insignificant fea-
tures while identifying the relevant ones that significantly
contribute to the target classification, thereby improving
model interpretability and efficiency.

3. Results

Table 2 presents the validation accuracy of the ML mod-
els trained on the complete set of 48 features. The models
exhibit high performance across both training-validation
cross-folds and the testing phase, demonstrating their ef-
fectiveness in capturing relevant patterns in the data.

After evaluating multiple machine learning models, the
Boosted Trees ensemble employing the GentleBoost algo-
rithm was identified as the optimal approach. The base
learners are decision trees with a maximum depth of 25
splits, and the ensemble consists of 50 learners. A learning
rate of 0.05 was used to balance convergence speed and
model stability.

The second analysis, conducted to assess the impact of
different feature categories on the accuracy of the ensem-
ble model, is shown in Figure 2. It is evident that peak-
related features play a crucial role in model performance,
achieving the highest accuracy among all categories. The
left panel illustrates the classification accuracy of the best-
performing model for each feature set, while the right
panel presents the distribution of the 16 most relevant fea-
tures selected via the MRMR parameter, highlighting the
significance of these features in relation to the beat de-
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Figure 2. Relevance analysis of features. a) Classification
accuracy for each feature category. b) Distribution of the
16 most relevant features selected by categories.

tection function. The final selected features, ranked by
relevance using MRMR, included RMSSD, MCC Mean,
VarPeak, MCC Min, Bandwidth, RelHighFreqPower, per-
centage, Kurtosis, Median, HighFreqPower, MinPPInter-
val, MCC StdDev, Skewness, SDNN, MCC Kurtosis, and
Max, listed in descending order of importance.

The ensemble model, when trained with this refined set
of 16 features, maintained a high level of accuracy, achiev-
ing 97.6% in the validation phase and 97.0% in the fi-
nal testing phase. This demonstrates that a reduced yet
highly informative feature set can sustain model perfor-
mance while improving computational efficiency.

4. Discussion

The final accuracies achieved by the ensemble boosted
tree model with the reduced feature set demonstrate that an
optimal selection of features can sustain high classification
performance while enhancing computational efficiency.

Among the most relevant features identified, RMSSD,
MCC Mean, and MCC Min stand out. These metrics em-
phasize the significance of beat detection methodologies in
the feature extraction process. In our case, the PCPD ap-
proach was employed, demonstrating its effectiveness in
capturing essential signal characteristics without being in-
fluenced by the noise. The strong influence of these fea-
tures on classification accuracy suggests that precise beat
interval estimation plays a crucial role in distinguishing
different physiological states.

Comparing our results with existing literature, we ob-
serve that different studies about SQA methods have re-
ported similar classification performances. For instance,
Liu et al. [14] reported an accuracy of 94% and 96% across
training and testing phases, while Li et al. [8] attained 97%
and 95%, respectiely. Additionally, Orphanidou et al. [5]
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documented an accuracy of 97%, and Mohagheghian et
al. [9] presented an average accuracy of 94%. These com-
parisons highlight that our model performs competitively
within the state-of-the-art approaches.

A significant limitation in the field is the lack of a suffi-
ciently large and standardized benchmark dataset with la-
beled PPG signal quality data. The widespread reliance on
ECG as a reference standard introduces further complex-
ity, as it requires synchronized multimodal recordings and
may not reflect the standalone characteristics of the PPG
signal. This dependency hinders the development of uni-
versally accepted datasets for evaluating PPG-based classi-
fication algorithms. Addressing this gap in future research
would enable more consistent benchmarking and improve
the generalizability of results across different studies.

5. Conclusions

This study presented a robust machine learning-based
approach for PPG signal quality assessment, achieving
high classification accuracy (97.0%) with an optimized
feature set. The ensemble boosted tree model demon-
strated superior performance, reducing dependency on
fiducial points and improving computational efficiency.
Future work should focus on developing standardized
benchmark datasets to enhance comparability and gener-
alizability across studies.
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